785 research outputs found

    Translations in the exponential Orlicz space with Gaussian weight

    Full text link
    We study the continuity of space translations on non-parametric exponential families based on the exponential Orlicz space with Gaussian reference density.Comment: Submitted to GSI 2017, Pari

    The importance of dynamic risk constraints for limited liability operators

    Get PDF
    Previous literature shows that prevalent risk measures such as value at risk or expected shortfall are ineffective to curb excessive risk-taking by a tail-risk-seeking trader with S-shaped utility function in the context of portfolio optimisation. However, these conclusions hold only when the constraints are static in the sense that the risk measure is just applied to the terminal portfolio value. In this paper, we consider a portfolio optimisation problem featuring S-shaped utility and a dynamic risk constraint which is imposed throughout the entire trading horizon. Provided that the risk control policy is sufficiently strict relative to the Sharpe ratio of the asset, the trader’s portfolio strategies and the resulting maximal expected utility can be effectively constrained by a dynamic risk measure. Finally, we argue that dynamic risk constraints might still be ineffective if the trader has access to a derivatives market

    Optimal projection filters with information geometry

    Get PDF
    We review the introduction of several types of projection filters. Projection structures coming from information geometry are used to obtain a finite dimensional filter in the form of a stochastic differential equation (SDE), starting from the exact infinite-dimensional stochastic partial differential equation (SPDE) for the optimal filter. We start with the Stratonovich projection filters based on the Hellinger distance as introduced and developed in Brigo, Hanzon and Le Gland (1998, 1999) [19, 20], where the SPDE is put in Stratonovich form before projection, hence the term “Stratonovich projection”. The correction step of the filtering algorithm can be made exact by choosing a suitable exponential family as manifold, there is equivalence with assumed density filters and numerical examples have been studied. Other authors further developed these projection filters and we present a brief literature review. A second type of Stratonovich projection filters was introduced in Armstrong and Brigo (2016) [6] where a direct L2 metric is used for projection. Projecting on mixtures of densities as a manifold coincides with Galerkin methods. All the above projection filters lack optimality, as the single vector fields of the Stratonovich SPDE are projected optimally but the SPDE solution as a whole is not approximated optimally by the projected SDE solution according to a clear criterion. This led to the optimal projection filters in Armstrong, Brigo and Rossi Ferrucci (2019, 2018) [10, 9], based on the Ito vector and Ito jet projections, where several types of mean square distances between the optimal filter SPDE solution and the sought finite dimensional SDE approximations are minimized, with numerical examples. After reviewing the above developments, we conclude with the remaining challenges

    Phase transition in a log-normal Markov functional model

    Full text link
    We derive the exact solution of a one-dimensional Markov functional model with log-normally distributed interest rates in discrete time. The model is shown to have two distinct limiting states, corresponding to small and asymptotically large volatilities, respectively. These volatility regimes are separated by a phase transition at some critical value of the volatility. We investigate the conditions under which this phase transition occurs, and show that it is related to the position of the zeros of an appropriately defined generating function in the complex plane, in analogy with the Lee-Yang theory of the phase transitions in condensed matter physics.Comment: 9 pages, 5 figures. v2: Added asymptotic expressions for the convexity-adjusted Libors in the small and large volatility limits. v3: Added one reference. Final version to appear in Journal of Mathematical Physic

    Collateral Margining in Arbitrage-Free Counterparty Valuation Adjustment including Re-Hypotecation and Netting

    Get PDF
    This paper generalizes the framework for arbitrage-free valuation of bilateral counterparty risk to the case where collateral is included, with possible re-hypotecation. We analyze how the payout of claims is modified when collateral margining is included in agreement with current ISDA documentation. We then specialize our analysis to interest-rate swaps as underlying portfolio, and allow for mutual dependences between the default times of the investor and the counterparty and the underlying portfolio risk factors. We use arbitrage-free stochastic dynamical models, including also the effect of interest rate and credit spread volatilities. The impact of re-hypotecation, of collateral margining frequency and of dependencies on the bilateral counterparty risk adjustment is illustrated with a numerical example

    European Options in a Nonlinear Incomplete Market Model with Default

    Get PDF
    We study the superhedging prices and the associated superhedging strategies for European options in a nonlinear incomplete market model with default. The underlying market model consists of one risk-free asset and one risky asset, whose price may admit a jump at the default time. The portfolio processes follow nonlinear dynamics with a nonlinear driver ff. By using a dynamic programming approach, we first provide a dual formulation of the seller's (superhedging) price for the European option as the supremum, over a suitable set of equivalent probability measures Q∈QQ \in {\cal Q}, of the ff-evaluation/expectation under QQ of the payoff. We also establish a characterization of the seller's (superhedging) price as the initial value of the minimal supersolution of a constrained backward stochastic differential equation with default. Moreover, we provide some properties of the terminal profit made by the seller, and some results related to replication and no-arbitrage issues. Our results rely on first establishing a nonlinear optional and a nonlinear predictable decomposition for processes which are Ef{\cal E}^f-strong supermartingales under QQ for all Q∈QQ \in {\cal Q}

    Derivative pricing for a multi-curve extension of the Gaussian, exponentially quadratic short rate model

    Get PDF
    The recent financial crisis has led to so-called multi-curve models for the term structure. Here we study a multi-curve extension of short rate models where, in addition to the short rate itself, we introduce short rate spreads. In particular, we consider a Gaussian factor model where the short rate and the spreads are second order polynomials of Gaussian factor processes. This leads to an exponentially quadratic model class that is less well known than the exponentially affine class. In the latter class the factors enter linearly and for positivity one considers square root factor processes. While the square root factors in the affine class have more involved distributions, in the quadratic class the factors remain Gaussian and this leads to various advantages, in particular for derivative pricing. After some preliminaries on martingale modeling in the multi-curve setup, we concentrate on pricing of linear and optional derivatives. For linear derivatives, we exhibit an adjustment factor that allows one to pass from pre-crisis single curve values to the corresponding post-crisis multi-curve values

    Affine term structure models : a time-changed approach with perfect fit to market curves

    Full text link
    We address the so-called calibration problem which consists of fitting in a tractable way a given model to a specified term structure like, e.g., yield or default probability curves. Time-homogeneous jump-diffusions like Vasicek or Cox-Ingersoll-Ross (possibly coupled with compounded Poisson jumps, JCIR), are tractable processes but have limited flexibility; they fail to replicate actual market curves. The deterministic shift extension of the latter (Hull-White or JCIR++) is a simple but yet efficient solution that is widely used by both academics and practitioners. However, the shift approach is often not appropriate when positivity is required, which is a common constraint when dealing with credit spreads or default intensities. In this paper, we tackle this problem by adopting a time change approach. On the top of providing an elegant solution to the calibration problem under positivity constraint, our model features additional interesting properties in terms of implied volatilities. It is compared to the shift extension on various credit risk applications such as credit default swap, credit default swaption and credit valuation adjustment under wrong-way risk. The time change approach is able to generate much larger volatility and covariance effects under the positivity constraint. Our model offers an appealing alternative to the shift in such cases.Comment: 44 pages, figures and table

    Nonlinear valuation with XVAs: two converging approaches

    Get PDF
    When pricing OTC contracts in the presence of additional risk factors and costs, such as credit risk and funding and collateral costs, the starting “clean price” is modified additively by valuation adjustments (XVAs) that account for each factor or cost in isolation, while seemingly ignoring the combined effects. Instead, risk factors and costs can be jointly accounted for ab initio in the pricing mechanism at the level of cash flows, and this “adjusted cash flow" approach leads to a nonlinear valuation formula. While for practitioners this made more sense because it showed which discount factor is used for which cash flow (recall the multi-curve environment post-crisis), for academics, the focus was on checking that the resulting nonlinear valuation formula is consistent with the theoretical arbitrage-free “replication approach” that we also analyse in the paper. We formulate specific reasonable assumptions, which ensure that the valuation formulae obtained by the two approaches coincide, thus reinforcing both academics’ and practitioners’ confidence in adopting such nonlinear valuation formulae in a multi-curve setup
    • 

    corecore